Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.980
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731945

The main hallmark in the development of both type 1 and type 2 diabetes is a decline in functional ß-cell mass. This decline is predominantly attributed to ß-cell death, although recent findings suggest that the loss of ß-cell identity may also contribute to ß-cell dysfunction. This phenomenon is characterized by a reduced expression of key markers associated with ß-cell identity. This review delves into the insights gained from single-cell omics research specifically focused on ß-cell identity. It highlights how single-cell omics based studies have uncovered an unexpected level of heterogeneity among ß-cells and have facilitated the identification of distinct ß-cell subpopulations through the discovery of cell surface markers, transcriptional regulators, the upregulation of stress-related genes, and alterations in chromatin activity. Furthermore, specific subsets of ß-cells have been identified in diabetes, such as displaying an immature, dedifferentiated gene signature, expressing significantly lower insulin mRNA levels, and expressing increased ß-cell precursor markers. Additionally, single-cell omics has increased insight into the detrimental effects of diabetes-associated conditions, including endoplasmic reticulum stress, oxidative stress, and inflammation, on ß-cell identity. Lastly, this review outlines the factors that may influence the identification of ß-cell subpopulations when designing and performing a single-cell omics experiment.


Insulin-Secreting Cells , Single-Cell Analysis , Insulin-Secreting Cells/metabolism , Humans , Single-Cell Analysis/methods , Animals , Genomics/methods , Endoplasmic Reticulum Stress/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology
2.
Front Endocrinol (Lausanne) ; 15: 1388361, 2024.
Article En | MEDLINE | ID: mdl-38745946

Introduction: The pathogenesis of Post-Transplant Diabetes Mellitus (PTDM) is complex and multifactorial and it resembles that of Type-2 Diabetes Mellitus (T2DM). One risk factor specific to PTDM differentiates both entities: the use of immunosuppressive therapy. Specifically, Tacrolimus interacts with obesity and insulin resistance (IR) in accelerating the onset of PTDM. In a genotypic model of IR, the obese Zucker rats, Tacrolimus is highly diabetogenic by promoting the same changes in beta-cell already modified by IR. Nevertheless, genotypic animal models have their limitations and may not resemble the real pathophysiology of diabetes. In this study, we have evaluated the interaction between beta-cell damage and Tacrolimus in a non-genotypic animal model of obesity and metabolic syndrome. Methods: Sprague Dawley rats were fed a high-fat enriched diet during 45 days to induce obesity and metabolic dysregulation. On top of this established obesity, the administration of Tacrolimus (1mg/kg/day) during 15 days induced severe hyperglycaemia and changes in morphological and structural characteristics of the pancreas. Results: Obese animals administered with Tacrolimus showed increased size of islets of Langerhans and reduced beta-cell proliferation without changes in apoptosis. There were also changes in beta-cell nuclear factors such as a decrease in nuclear expression of MafA and a nuclear overexpression of FoxO1A, PDX-1 and NeuroD1. These animals also showed increased levels of pancreatic insulin and glucagon. Discussion: This model could be evidence of the relationship between the T2DM and PTDM physiopathology and, eventually, the model may be instrumental to study the pathogenesis of T2DM.


Disease Models, Animal , Metabolic Syndrome , Obesity , Rats, Sprague-Dawley , Tacrolimus , Animals , Tacrolimus/pharmacology , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Metabolic Syndrome/chemically induced , Obesity/metabolism , Obesity/pathology , Rats , Male , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/pharmacology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/drug effects , Phenotype , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Insulin Resistance , Diet, High-Fat/adverse effects
3.
Sci Rep ; 14(1): 10855, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740782

Type 2 diabetes mellitus (T2DM) is a chronic inflammatory disease that can compromise the functioning of various organs, including the salivary glands (SG). The purinergic system is one of the most important inflammatory pathways in T2DM condition, and P2X7R and P2X4R are the primary purinergic receptors in SG that regulate inflammatory homeostasis. This study aimed to evaluate P2X7R and P2X4R expression, and morphological changes in the submandibular gland (SMG) in T2DM. Twenty-four 5-week-old mice were randomly assigned to control (CON) and diabetes mellitus (DM) groups (n = 12 each). Body weight, diet, and blood glucose levels were monitored weekly. The histomorphology of the SMG and the expression of the P2X7R, and P2X7R was evaluated by immunohistochemistry (IHC) staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) at 11 and 13 weeks of age. Our findings indicate a significant increase in food consumption, body weight, and blood glucose levels in the DM group. Although a significant increase in P2X7R and P2X4R expression was observed in the DM groups, the receptor location remained unchanged. We also observed a significant increase in the acinar area in the DM13w group, and a significant decrease in the ductal area in the DM11w and DM13w groups. Targeting purinergic receptors may offer novel therapeutic methods for diabetic complications.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diet, High-Fat , Receptors, Purinergic P2X4 , Receptors, Purinergic P2X7 , Submandibular Gland , Animals , Submandibular Gland/metabolism , Submandibular Gland/pathology , Receptors, Purinergic P2X4/metabolism , Receptors, Purinergic P2X4/genetics , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Diet, High-Fat/adverse effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Male , Blood Glucose/metabolism , Body Weight , Streptozocin , Mice, Inbred C57BL
4.
Brain Behav ; 14(5): e3533, 2024 May.
Article En | MEDLINE | ID: mdl-38715429

AIM: Although there exists substantial epidemiological evidence indicating an elevated risk of dementia in individuals with diabetes, our understanding of the neuropathological underpinnings of the association between Type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) remains unclear. This study aims to unveil the microstructural brain changes associated with T2DM in AD and identify the clinical variables contributing to these changes. METHODS: In this retrospective study involving 64 patients with AD, 31 individuals had concurrent T2DM. The study involved a comparative analysis of diffusion tensor imaging (DTI) images and clinical features between patients with and without T2DM. The FSL FMRIB software library was used for comprehensive preprocessing and tractography analysis of DTI data. After eddy current correction, the "bedpost" model was utilized to model diffusion parameters. Linear regression analysis with a stepwise method was used to predict the clinical variables that could lead to microstructural white matter changes. RESULTS: We observed a significant impairment in the left superior longitudinal fasciculus (SLF) among patients with AD who also had T2DM. This impairment in patients with AD and T2DM was associated with an elevation in creatine levels. CONCLUSION: The white matter microstructure in the left SLF appears to be sensitive to the impairment of kidney function associated with T2DM in patients with AD. The emergence of AD in association with T2DM may be driven by mechanisms distinct from the typical AD pathology. Compromised renal function in AD could potentially contribute to impaired white matter integrity.


Alzheimer Disease , Diabetes Mellitus, Type 2 , Diffusion Tensor Imaging , White Matter , Humans , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Male , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Female , Aged , Retrospective Studies , Brain/diagnostic imaging , Brain/pathology , Middle Aged , Aged, 80 and over , Creatine/metabolism
5.
Behav Brain Res ; 466: 114992, 2024 May 28.
Article En | MEDLINE | ID: mdl-38599250

Type 2 diabetes mellitus (T2DM) patients often suffer from depressive symptoms, which seriously affect cooperation in treatment and nursing. The amygdala plays a significant role in depression. This study aims to explore the microstructural alterations of the amygdala in T2DM and to investigate the relationship between the alterations and depressive symptoms. Fifty T2DM and 50 healthy controls were included. Firstly, the volumes of subcortical regions and subregions of amygdala were calculated by FreeSurfer. Covariance analysis (ANCOVA) was conducted between the two groups with covariates of age, sex, and estimated total intracranial volume to explore the differences in volume of subcortical regions and subregions of amygdala. Furthermore, the structural covariance within the amygdala subregions was performed. Moreover, we investigate the correlation between depressive symptoms and the volume of subcortical regions and amygdala subregions in T2DM. We observed a reduction in the volume of the bilateral cortico-amygdaloid transition area, left basal nucleus, bilateral accessory basal nucleus, left anterior amygdaloid area of amygdala, the left thalamus and left hippocampus in T2DM. T2DM patients showed decreased structural covariance connectivity between left paralaminar nucleus and the right central nucleus. Moreover, there was a negative correlation between self-rating depression scale scores and the volume of the bilateral cortico-amygdaloid transition area in T2DM. This study reveals extensive structural alterations in the amygdala subregions of T2DM patients. The reduction in the volume of the bilateral cortico-amygdaloid transition area may be a promising imaging marker for early recognition of depressive symptoms in T2DM.


Amygdala , Depression , Diabetes Mellitus, Type 2 , Magnetic Resonance Imaging , Humans , Diabetes Mellitus, Type 2/pathology , Amygdala/pathology , Amygdala/diagnostic imaging , Male , Female , Middle Aged , Depression/diagnostic imaging , Depression/pathology , Adult , Aged , Hippocampus/pathology , Hippocampus/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/pathology
6.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38673892

Skeletal muscle plays a critical role in metabolic diseases, such as obesity and type 2 diabetes mellitus (T2DM). Muscle atrophy, characterized by a decrease in muscle mass and function, occurs due to an imbalance between the rates of muscle protein synthesis and degradation. This study aimed to investigate the molecular mechanisms that lead to muscle atrophy in obese and T2DM mouse models. Additionally, the effect of nerve growth factor (NGF) on the protein synthesis and degradation pathways was examined. Male mice were divided into three groups: a control group that was fed a standard chow diet, and two experimental groups that were fed a Western diet. After 8 weeks, the diabetic group was injected with streptozotocin to induce T2DM. Each group was then further divided into NGF-treated or non-treated control group. In the gastrocnemius muscles of the Western diet group, increased expressions of myostatin, autophagy markers, and ubiquitin ligases were observed. Skeletal muscle tissue morphology indicated signs of muscle atrophy in both obese and diabetic mice. The NGF-treated group showed a prominent decrease in the protein levels of myostatin and autophagy markers. Furthermore, the NGF-treated group showed an increased Cyclin D1 level. Western diet-induced obesity and T2DM may be linked to muscle atrophy through upregulation of myostatin and subsequent increase in the ubiquitin and autophagy systems. Moreover, NGF treatment may improve muscle protein synthesis and cell cycling.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Muscle, Skeletal , Muscular Atrophy , Nerve Growth Factor , Obesity , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Obesity/metabolism , Obesity/complications , Obesity/pathology , Nerve Growth Factor/metabolism , Male , Mice , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/complications , Autophagy/drug effects , Myostatin/metabolism , Mice, Inbred C57BL , Diet, Western/adverse effects
7.
Exp Cell Res ; 438(1): 114031, 2024 May 01.
Article En | MEDLINE | ID: mdl-38616032

Diabetes is closely associated with vascular calcification (VC). Exorbitant glucose concentration activates pro-calcific effects in vascular smooth muscle cells (VSMCs). This study enrolled 159 elderly patients with type 2 diabetes and divided them into three groups, T1, T2 and T3, according to brachial-ankle pulse wave velocity(BaPWV). There were statistically significant differences in the waist circumference, waist hip ratio, systolic blood pressure, 12,13-diHOME (a lipokin) concentration among T1, T2 and T3. 12,13-diHOME levels were positively correlated to high density lipoprotein cholesterol and total cholesterol, but negatively correlated to with waist circumference, waist hip ratio, systolic blood pressure and baPWV. Studies in vitro showed that 12,13-diHOME effectively inhibits calcification in VSMCs under high glucose conditions. Notably, 12,13-diHOME suppressed the up-regulation of carnitine O-palmitoyltransferase 1 (CPT1A) and CPT1A-induced succinylation of HMGB1. The succinylation of HMGB1 at the K90 promoted the protein stability and induced the enrichment of HMGB1 in cytoplasm, which induced the calcification in VSMCs. Together, 12,13-diHOME attenuates high glucose-induced calcification in VSMCs through repressing CPT1A-mediated HMGB1 succinylation.


Carnitine O-Palmitoyltransferase , Glucose , HMGB1 Protein , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Vascular Calcification , Humans , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , HMGB1 Protein/metabolism , Glucose/metabolism , Glucose/pharmacology , Male , Aged , Vascular Calcification/metabolism , Vascular Calcification/pathology , Female , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Cells, Cultured
8.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673770

Type 2 diabetes is a chronic disease marked by hyperglycemia; impaired insulin secretion by pancreatic ß-cells is a hallmark of this disease. Recent studies have shown that hypoxia occurs in the ß-cells of patients with type 2 diabetes and hypoxia, in turn, contributes to the insulin secretion defect and ß-cell loss through various mechanisms, including the activation of hypoxia-inducible factors, induction of transcriptional repressors, and activation of AMP-activated protein kinase. This review focuses on advances in our understanding of the contribution of ß-cell hypoxia to the development of ß-cell dysfunction in type 2 diabetes. A better understanding of ß-cell hypoxia might be useful in the development of new strategies for treating type 2 diabetes.


Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Animals , Disease Progression , Cell Hypoxia , Insulin Secretion , Hypoxia/metabolism , Insulin/metabolism
9.
Front Endocrinol (Lausanne) ; 15: 1335899, 2024.
Article En | MEDLINE | ID: mdl-38510696

Objective: This study aims to determine the effectiveness of T1ρ in detecting myocardial fibrosis in type 2 diabetes mellitus (T2DM) patients by comparing with native T1 and extracellular volume (ECV) fraction. Methods: T2DM patients (n = 35) and healthy controls (n = 30) underwent cardiac magnetic resonance. ECV, T1ρ, native T1, and global longitudinal strain (GLS) values were assessed. Diagnostic performance was analyzed using receiver operating curves. Results: The global ECV and T1ρ of T2DM group (ECV = 32.1 ± 3.2%, T1ρ = 51.6 ± 3.8 msec) were significantly higher than those of controls (ECV = 26.2 ± 1.6%, T1ρ = 46.8 ± 2.0 msec) (all P < 0.001), whether there was no significant difference in native T1 between T2DM and controls (P = 0.264). The GLS decreased significantly in T2DM patients compared with controls (-16.5 ± 2.4% vs. -18.3 ± 2.6%, P = 0.015). The T1ρ and native T1 were associated with ECV (Pearson's r = 0.50 and 0.25, respectively, both P < 0.001); the native T1, T1ρ, and ECV were associated with hemoglobin A1c (Pearson's r = 0.41, 0.52, and 0.61, respectively, all P < 0.05); and the ECV was associated with diabetes duration (Pearson's r = 0.41, P = 0.016). The AUC of ECV, T1ρ, GLS, and native T1 were 0.869, 0.810, 0.659, and 0.524, respectively. Conclusion: In T2DM patients, T1ρ may be a new non-contrast cardiac magnetic resonance technique for identifying myocardial diffuse fibrosis, and T1ρ may be more sensitive than native T1 in the detection of myocardial diffuse fibrosis.


Cardiomyopathies , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/pathology , Myocardium/pathology , Heart , Cardiomyopathies/pathology , Fibrosis , Magnetic Resonance Spectroscopy
10.
Cells ; 13(6)2024 Mar 18.
Article En | MEDLINE | ID: mdl-38534376

Diabetes mellitus (DM) is one of the most prevalent diseases globally, and its prevalence is rapidly increasing. Most patients with a long-term history of DM present with some degree of keratopathy (DK). Despite its high incidence, the underlying inflammatory mechanism of DK has not been elucidated yet. For further insights into the underlying immunopathologic processes, we utilized streptozotocin-induced mice to model type 1 DM (T1D) and B6.Cg-Lepob/J mice to model type 2 DM (T2D). We evaluated the animals for the development of clinical manifestations of DK. Four weeks post-induction, the total frequencies of corneal CD45+CD11b+Ly-6G- myeloid cells, with enhanced gene and protein expression levels for the proinflammatory cytokines TNF-α and IL-1ß, were higher in both T1D and T2D animals. Additionally, the frequencies of myeloid cells/mm2 in the sub-basal neural plexus (SBNP) were significantly higher in T1D and T2D compared to non-diabetic mice. DK clinical manifestations were observed four weeks post-induction, including significantly lower tear production, corneal sensitivity, and epitheliopathy. Nerve density in the SBNP and intraepithelial terminal endings per 40x field were lower in both models compared to the normal controls. The findings of this study indicate that DM alters the immune quiescent state of the cornea during disease onset, which may be associated with the progressive development of the clinical manifestations of DK.


Corneal Diseases , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Humans , Mice , Animals , Diabetes Mellitus, Type 1/pathology , Cornea/pathology , Corneal Diseases/pathology , Diabetes Mellitus, Type 2/pathology , Streptozocin
11.
Sci Rep ; 14(1): 7245, 2024 03 27.
Article En | MEDLINE | ID: mdl-38538662

The association between serum tumor necrosis factor receptor (TNFRs: TNFR1, TNFR2) levels and estimated glomerular filtration rate (eGFR) observed in patients with diabetes has not been comprehensively tested in healthy subjects with normal kidney function. It also remains unclear whether TNFR levels differ by age and sex, and between healthy subjects and diabetics. We measured serum TNFR levels in 413 healthy subjects and 292 patients with type 2 diabetes. In healthy subjects, TNFR levels did not differ between men and women. Additionally, TNFR2, but not TNFR1, levels increased with age. In multivariate analysis, TNFR1 was associated only with cystatin C-based eGFR (eGFR-CysC), whereas TNFR2 was associated with systolic blood pressure in addition to eGFR-CysC. Both TNFRs were associated with lower eGFR (eGFR-Cys < 90 mL/min/1.73 m2) even after adjustment for relevant clinical factors. Upon combining healthy subjects and patients with diabetes, the presence of diabetes and elevated glycated hemoglobin level were significant factors in determining TNFR levels. TNFR levels were associated with eGFR-CysC, but were not affected by age and sex in healthy subjects with normal kidney function. TNFR levels in patients with diabetes appeared to be higher than in healthy subjects.


Diabetes Mellitus, Type 2 , Receptors, Tumor Necrosis Factor, Type II , Male , Humans , Female , Receptors, Tumor Necrosis Factor, Type I , Glomerular Filtration Rate/physiology , Diabetes Mellitus, Type 2/pathology , Kidney/pathology , Biomarkers
12.
Subst Abuse Treat Prev Policy ; 19(1): 21, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532435

BACKGROUND: Persons with opioid use disorders (OUD) and persons with substance use disorders (SUD) who inject substances have a reduced life expectancy of up to 25 years compared with the general population. Chronic liver diseases are a substantial cause of this. Screening strategies based on liver stiffness measurements (LSM) may facilitate early detection, timely intervention, and treatment of liver disease. This study aims to investigate the extent of chronic liver disease measured with transient elastography and the association between LSM and various risk factors, including substance use patterns, hepatitis C virus (HCV) infection, alcohol use, body mass index, age, type 2 diabetes mellitus, and high-density lipoprotein (HDL) cholesterol among people with OUD or with SUD who inject substances. METHODS: Data was collected from May 2017 to March 2022 in a cohort of 676 persons from Western Norway. The cohort was recruited from two populations: Persons receiving opioid agonist therapy (OAT) (81% of the sample) or persons with SUD injecting substances but not receiving OAT. All participants were assessed at least once with transient elastography. A linear mixed model was performed to assess the impact of risk factors such as HCV infection, alcohol use, lifestyle-associated factors, and substance use on liver stiffness at baseline and over time. Baseline was defined as the time of the first liver stiffness measurement. The results are presented as coefficients (in kilopascal (kPa)) with 95% confidence intervals (CI). RESULTS: At baseline, 12% (n = 83) of the study sample had LSM suggestive of advanced chronic liver disease (LSM ≥ 10 kPa). Advanced age (1.0 kPa per 10 years increments, 95% CI: 0.68;1.3), at least weekly alcohol use (1.3, 0.47;2.1), HCV infection (1.2, 0.55;1.9), low HDL cholesterol level (1.4, 0.64;2.2), and higher body mass index (0.25 per increasing unit, 0.17;0.32) were all significantly associated with higher LSM at baseline. Compared with persistent chronic HCV infection, a resolved HCV infection predicted a yearly reduction of LSM (-0.73, -1.3;-0.21) from baseline to the following liver stiffness measurement. CONCLUSIONS: More than one-tenth of the participants in this study had LSM suggestive of advanced chronic liver disease. It underscores the need for addressing HCV infection and reducing lifestyle-related liver risk factors, such as metabolic health factors and alcohol consumption, to prevent the advancement of liver fibrosis or cirrhosis in this particular population.


Diabetes Mellitus, Type 2 , Hepatitis C, Chronic , Hepatitis C , Substance-Related Disorders , Humans , Child , Prospective Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Liver/pathology , Liver Cirrhosis/epidemiology , Risk Factors , Hepatitis C, Chronic/epidemiology , Hepatitis C/complications , Substance-Related Disorders/complications
13.
Front Endocrinol (Lausanne) ; 15: 1327339, 2024.
Article En | MEDLINE | ID: mdl-38487342

Background: This study aimed to identify disruptions in white matter integrity in type 2 diabetes mellitus (T2DM) patients by utilizing the white matter tract integrity (WMTI) model, which describes compartment-specific diffusivities in the intra- and extra-axonal spaces, and to investigate the relationship between WMTI metrics and clinical and cognitive measurements. Methods: A total of 73 patients with T2DM and 57 healthy controls (HCs) matched for age, sex, and education level were enrolled and underwent diffusional kurtosis imaging and cognitive assessments. Tract-based spatial statistics (TBSS) and atlas-based region of interest (ROI) analysis were performed to compare group differences in diffusional metrics, including fractional anisotropy (FA), mean diffusivity (MD), axonal water fraction (AWF), intra-axonal diffusivity (Daxon), axial extra-axonal space diffusivity (De,//), and radial extra-axonal space diffusivity (De,⊥) in multiple white matter (WM) regions. Relationships between diffusional metrics and clinical and cognitive functions were characterized. Results: In the TBSS analysis, the T2DM group exhibited decreased FA and AWF and increased MD, De,∥, and De,⊥ in widespread WM regions in comparison with the HC group, which involved 56.28%, 32.07%, 73.77%, 50.47%, and 75.96% of the mean WM skeleton, respectively (P < 0.05, TFCE-corrected). De,⊥ detected most of the WM changes, which were mainly located in the corpus callosum, internal capsule, external capsule, corona radiata, posterior thalamic radiations, sagittal stratum, cingulum (cingulate gyrus), fornix (stria terminalis), superior longitudinal fasciculus, and uniform fasciculus. Additionally, De,⊥ in the genu of the corpus callosum was significantly correlated with worse performance in TMT-A (ß = 0.433, P < 0.001) and a longer disease duration (ß = 0.438, P < 0.001). Conclusions: WMTI is more sensitive than diffusion tensor imaging in detecting T2DM-related WM microstructure abnormalities and can provide novel insights into the possible pathological changes underlying WM degeneration in T2DM. De,⊥ could be a potential imaging marker in monitoring disease progression in the brain and early intervention treatment for the cognitive impairment in T2DM.


Cognitive Dysfunction , Diabetes Mellitus, Type 2 , White Matter , Humans , White Matter/diagnostic imaging , Diffusion Tensor Imaging/methods , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/pathology , Diffusion Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology
14.
Redox Biol ; 72: 103127, 2024 Jun.
Article En | MEDLINE | ID: mdl-38527400

Emerging evidence suggests that GSK3ß, a redox-sensitive transducer downstream of insulin signaling, acts as a convergent point for myriad pathways implicated in kidney injury, repair, and regeneration. However, its role in diabetic kidney disease remains controversial. In cultured glomerular podocytes, exposure to a milieu of type 2 diabetes elicited prominent signs of podocyte injury and degeneration, marked by loss of homeostatic marker proteins like synaptopodin, actin cytoskeleton disruption, oxidative stress, apoptosis, and stress-induced premature senescence, as shown by increased staining for senescence-associated ß-galactosidase activity, amplified formation of γH2AX foci, and elevated expression of mediators of senescence signaling, like p21 and p16INK4A. These degenerative changes coincided with GSK3ß hyperactivity, as evidenced by GSK3ß overexpression and reduced inhibitory phosphorylation of GSK3ß, and were averted by tideglusib, a highly-selective small molecule inhibitor of GSK3ß. In agreement, post-hoc analysis of a publicly-available glomerular transcriptomics dataset from patients with type 2 diabetic nephropathy revealed that the curated diabetic nephropathy-related gene set was enriched in high GSK3ß expression group. Mechanistically, GSK3ß-modulated nuclear factor Nrf2 signaling is involved in diabetic podocytopathy, because GSK3ß knockdown reinforced Nrf2 antioxidant response and suppressed oxidative stress, resulting in an improvement in podocyte injury and senescence. Conversely, ectopic expression of the constitutively active mutant of GSK3ß impaired Nrf2 antioxidant response and augmented oxidative stress, culminating in an exacerbated diabetic podocyte injury and senescence. Moreover, IRS-1 was found to be a cognate substrate of GSK3ß for phosphorylation at IRS-1S332, which negatively regulates IRS-1 activity. GSK3ß hyperactivity promoted IRS-1 phosphorylation, denoting a desensitized insulin signaling. Consistently, in vivo in db/db mice with diabetic nephropathy, GSK3ß was hyperactive in glomerular podocytes, associated with IRS-1 hyperphosphorylation, impaired Nrf2 response and premature senescence. Our finding suggests that GSK3ß is likely a novel therapeutic target for treating type 2 diabetic glomerular injury.


Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Glycogen Synthase Kinase 3 beta , NF-E2-Related Factor 2 , Oxidation-Reduction , Oxidative Stress , Podocytes , Podocytes/metabolism , Podocytes/pathology , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Signal Transduction , Male
15.
Environ Toxicol ; 39(4): 2466-2476, 2024 Apr.
Article En | MEDLINE | ID: mdl-38305644

Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants that have been associated with type 2 diabetes (T2DM) in cohort studies. This review aims to comprehensively assess the molecular mechanisms of PCBs-induced T2DM. Recent progress has been made in the research of PCBs in liver tissue, adipose tissue, and other tissues. By influencing the function of nuclear receptors, such as the aryl hydrocarbon receptor (AhR), pregnancy X receptor (PXR), and peroxisome proliferator activated receptor γ (PPARγ), as well as the inflammatory response, PCBs disrupt the balance of hepatic glucose and lipid metabolism. This is associated with insulin resistance (IR) in the target organ of insulin. Through androgen receptor (AR), estrogen receptor α/ß (ERα/ß), and pancreato-duodenal-homeobox gene-1 (PDX-1), PCBs affect the secretion of insulin and increase blood glucose. Thus, this review is a discussion on the relationship between PCBs exposure and the pathogenesis of T2DM. It is hoped to provide basic concepts for diabetes research and disease treatment.


Diabetes Mellitus, Type 2 , Insulin Resistance , Insulins , Polychlorinated Biphenyls , Humans , Polychlorinated Biphenyls/toxicity , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/pathology , Liver/metabolism , Receptors, Aryl Hydrocarbon
16.
Diabetes Metab Syndr ; 18(2): 102963, 2024 Feb.
Article En | MEDLINE | ID: mdl-38373384

BACKGROUNDS: Accumulating data demonstrated that the cortico-medullary difference in apparent diffusion coefficient (ΔADC) of diffusion-weighted magnetic resonance imaging (DWI) was a better correlation with kidney fibrosis, tubular atrophy progression, and a predictor of kidney function evolution in chronic kidney disease (CKD). OBJECTIVES: We aimed to assess the value of ΔADC in evaluating disease severity, differential diagnosis, and the prognostic risk stratification for patients with type 2 diabetes (T2D) and CKD. METHODS: Total 119 patients with T2D and CKD who underwent renal MRI were prospectively enrolled. Of them, 89 patients had performed kidney biopsy for pathological examination, including 38 patients with biopsy-proven diabetic kidney disease (DKD) and 51 patients with biopsy-proven non-diabetic kidney disease (NDKD) and Mix (DKD + NDKD). Clinicopathological characteristics were compared according to different ΔADC levels. Moreover, univariate and multivariate-linear regression analyses were performed to explore whether ΔADC was independently associated with estimated glomerular filtration rate (eGFR) and urinary albumin creatinine ratio (UACR). The diagnostic performance of ΔADC for discriminating DKD from NDKD + Mix was evaluated by receiver operating characteristic (ROC) analysis. In addition, an individual's 2- or 5-year risk probability of progressing to end-stage kidney disease (ESKD) was calculated by the kidney failure risk equation (KFRE). The effect of ΔADC on prognostic risk stratification was assessed. Additionally, net reclassification improvement (NRI) was used to evaluate the model performance. RESULTS: All enrolled patients had a median ΔADC level of 86 (IQR 28, 155) × 10-6 mm2/s. ΔADC significantly decreased across the increasing staging of CKD (P < 0.001). Moreover, those with pathological-confirmed DKD has a significantly lower level of ΔADC than those with NDKD and Mix (P < 0.001). It showed that ΔADC was independently associated with eGFR (ß = 1.058, 95% CI = [1.002,1.118], P = 0.042) and UACR (ß = -3.862, 95% CI = [-7.360, -0.365], P = 0.031) at multivariate linear regression analyses. Besides, ΔADC achieved an AUC of 0.707 (71% sensitivity and 75% specificity) and AUC of 0.823 (94% sensitivity and 67% specificity) for discriminating DKD from NDKD + Mix and higher ESKD risk categories (≥50% at 5 years; ≥10% at 2 years) from lower risk categories (<50% at 5 years; <10% at 2 years). Accordingly, the optimal cutoff value of ΔADC for higher ESKD risk categories was 66 × 10-6 mm2/s, and the group with the low-cutoff level of ΔADC group was associated with 1.232 -fold (95% CI 1.086, 1.398) likelihood of higher ESKD risk categories as compared to the high-cutoff level of ΔADC group in the fully-adjusted model. Reclassification analyses confirmed that the final adjusted model improved NRI. CONCLUSIONS: ΔADC was strongly associated with eGFR and UACR in patients with T2D and CKD. More importantly, baseline ΔADC was predictive of higher ESKD risk, independently of significant clinical confounding. Specifically, ΔADC <78 × 10-6 mm2/s and <66 × 10-6 mm2/s would help to identify T2D patients with the diagnosis of DKD and higher ESKD risk categories, respectively.


Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/pathology , Renal Insufficiency, Chronic/complications , Kidney/pathology , Kidney Failure, Chronic/pathology , Diabetic Nephropathies/diagnostic imaging , Diabetic Nephropathies/etiology , Glomerular Filtration Rate , Magnetic Resonance Imaging
17.
Sci Rep ; 14(1): 2741, 2024 02 01.
Article En | MEDLINE | ID: mdl-38302529

Diabetes is associated with cognitive decline, but the underlying mechanisms are complex and their relationship with Alzheimer's Disease biomarkers is not fully understood. We assessed the association of small vessel disease (SVD) and amyloid burden with cognitive functioning in 47 non-demented older adults with type-2 diabetes from the Israel Diabetes and Cognitive Decline Study (mean age 78Y, 64% females). FLAIR-MRI, Vizamyl amyloid-PET, and T1W-MRI quantified white matter hyperintensities as a measure of SVD, amyloid burden, and gray matter (GM) volume, respectively. Mean hemoglobin A1c levels and duration of type-2 diabetes were used as measures of diabetic control. Cholesterol level and blood pressure were used as measures of cardiovascular risk. A broad neuropsychological battery assessed cognition. Linear regression models revealed that both higher SVD and amyloid burden were associated with lower cognitive functioning. Additional adjustments for type-2 diabetes-related characteristics, GM volume, and cardiovascular risk did not alter the results. The association of amyloid with cognition remained unchanged after further adjustment for SVD, and the association of SVD with cognition remained unchanged after further adjustment for amyloid burden. Our findings suggest that SVD and amyloid pathology may independently contribute to lower cognitive functioning in non-demented older adults with type-2 diabetes, supporting a multimodal approach for diagnosing, preventing, and treating cognitive decline in this population.


Alzheimer Disease , Cerebral Small Vessel Diseases , Cognition Disorders , Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Vascular Diseases , Female , Humans , Aged , Male , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Cognition , Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Cognition Disorders/pathology , Amyloid/metabolism , Magnetic Resonance Imaging , Vascular Diseases/pathology , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/pathology , Brain/metabolism
18.
J Neurosci ; 44(14)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38395612

ß-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, ß-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether ß-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female ß-catenin flox mice, to specifically delete ß-catenin expression in the mediobasal hypothalamus (MBH-ß-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-ß-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-ß-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-ß-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for ß-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.


Diabetes Mellitus, Type 2 , Diet, High-Fat , Animals , Female , Male , Mice , beta Catenin/genetics , beta Catenin/metabolism , Body Weight/genetics , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Glucose/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/metabolism
19.
Nature ; 627(8003): 347-357, 2024 Mar.
Article En | MEDLINE | ID: mdl-38374256

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Diabetes Mellitus, Type 2 , Disease Progression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Adipocytes/metabolism , Chromatin/genetics , Chromatin/metabolism , Coronary Artery Disease/complications , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/classification , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/physiopathology , Diabetic Nephropathies/complications , Diabetic Nephropathies/genetics , Endothelial Cells/metabolism , Enteroendocrine Cells , Epigenomics , Genetic Predisposition to Disease/genetics , Islets of Langerhans/metabolism , Multifactorial Inheritance/genetics , Peripheral Arterial Disease/complications , Peripheral Arterial Disease/genetics , Single-Cell Analysis
20.
J Cell Physiol ; 239(5): e31212, 2024 May.
Article En | MEDLINE | ID: mdl-38308646

C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.


C-Peptide , Humans , C-Peptide/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Signal Transduction
...